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Abstract

Cancer is a major cause of morbidity and mortality across the globe, with a substantial
increase in cases anticipated over the next few decades. Given the constraints and adverse
effects associated with standard cancer therapies, the contribution of diet and nutraceu-
ticals to cancer prevention and treatment is receiving increased scrutiny. A diet rich in
plant-based foods, extra virgin olive oil (EVOO), and bioactive compounds, including the
Mediterranean Diet, has been associated with reduced cancer risk and improved treatment
outcomes. This review aims to explore the complex mechanisms of the MedDiet and nu-
traceuticals (polyphenols, flavonoids, terpenoids) in cancer prevention, to determine their
potential as cancer treatment adjuvants. Promising results show that key compounds such
as bergamot polyphenolic fraction (BPF), cynaropicrin, oleuropein, quercetin, resveratrol,
and serotonin can modulate oxidative stress, inflammation, the tumor microenvironment,
the cell cycle, and drug resistance. A significant observation is that many of these sub-
stances demonstrate dual dose-dependent activity; they function as antioxidants in healthy
cells but induce pro-oxidant and pro-apoptotic effects in cancerous cells. Their ability
to boost chemotherapy’s effectiveness and safety while lessening side effects and offer-
ing combined advantages is also explored. To summarize, this review suggests that the
Mediterranean Diet and nutraceutical supplements may help prevent and manage cancer,
but more research is needed to confirm their benefits.

Keywords: Mediterranean Diet; nutraceuticals; dietary polyphenols; antioxidant compounds;
oxidative stress; inflammation; cancer prevention; health-promoting phytochemicals

1. Introduction

Cancer is the second leading cause of death globally, trailing only heart disease.
According to the International Agency for Research on Cancer (IARC), there were about
20 million new cancer diagnoses and 9.7 million deaths globally. By 2050, annual cases
could hit 35 million, assuming current incidence levels persist [1]. Several factors, including
lifestyle, daily routines, and diet, contribute to the rising cancer rates [2]. Epidemiological
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and clinical research shows a link between nutrition and the development or progression
of various cancers (colon, breast, and prostate), classifying them as diet related [3]. The
beneficial effects of a healthy lifestyle, and its correlation with the Mediterranean Diet’s
(MedDiet) wide range of health benefits, are supported by several studies [4], including
reduced risk of cancer and cardiovascular disease (CVD), reduced metabolic risk of diabetes
mellitus (DM), obesity, and metabolic syndrome (MS), increased longevity, and improved
cognitive function. Furthermore, the MedDiet is linked to a healthy gut microbiome,
impacting cancer development and treatment.

The hallmark of cancer is the conversion of some normal cells into malignant neoplastic
cells [5].

Therefore, uncontrolled proliferation, evasion of growth suppressors and the immune
system, angiogenesis, metastasis, and metabolic reprogramming are the main character-
istics [6]. Cellular and subcellular microenvironments and genetic instabilities are key to
this multistep process. Malfunction of the core cell cycle leads to unstable deoxyribonu-
cleic acid (DNA) and mutations, furthering tumorigenesis [7]. The high number of cancer
cases urgently requires new treatment approaches to address the weaknesses of traditional
methods like surgery, hormone replacement therapy (HRT), chemotherapy, and radiation,
which often cause drug resistance and harmful side effects [8]. Because they boost tumor
response to treatments and decrease systemic toxicity, the wide array of natural compounds
in the MedDiet are a potential cancer-fighting strategy [9]. This review aims to highlight
the effects of natural compounds, as nutraceuticals, in the management of cancer therapy.
Due to their proven antioxidant and inflammatory properties, as well as their ability to
modulate the cell cycle, natural compounds—in particular extracts from a selection of foods
characteristic of the MedDiet, such as Citrus bergamia Risso & Poiteau, Cynara cardunculus
L., Olea Europaea L., foods rich in quercetin, resveratrol (RV), as well as Mediterranean
plants such as Ferula communis L.—may be relevant for synergism with chemotherapeutic
drugs while reducing their related toxic effects.

1.1. Complexities of Cancer Pathogenesis

Cancer development is a complex process influenced by various factors, leading to
diverse clinical presentations, and various factors contribute to its pathogenesis, each a
potential therapeutic target (e.g., chemicals, viruses, genetic, and non-genetic factors).

Several studies have shown that carcinogenesis is related to somatic mutations of
stem cells, which generate a subpopulation of cancer stem cells (CSCs) with self-renewal
capabilities, producing daughter cells with highly tumorigenic and invasive potential,
originating primary tumors [10]. Evidence suggests that epigenetic mutations can provide
tumor cells with a reproductive advantage over normal cells, leading to impaired tumor
suppression and uncontrolled tumor growth [11]. However, the inherent adaptability of
healthy cells, allowing epigenetic and phenotypic shifts leading to CSC formation, is pivotal
in cancer development [12]. Oncogene and tumor suppressor alterations in this scenario
accelerate cell growth and may cause a more aggressive metastatic phenotype.

The occurrence of Rat sarcoma virus (RAS) and its family genes, Kirsten rat sarcoma
viral oncogene homolog (KRAS) (KRAS4A and KRAS4B), Neuroblastoma RAS viral onco-
gene homolog (NRAS), or Harvey Rat sarcoma virus (HRAS) [13] are among the most
dysregulated protooncogenes and best characterized. Oncogenic activation of RAS results
in ligand-independent hyperstimulation of downstream signaling cascades, including the
extracellular signal-regulated kinase 1/2 (ERK1/2) [14] and phosphatidylinositol 3-kinase
(PI3K) promoting cell growth, cell cycle entry, cell survival, and cell adhesion. Moreover,
mutations in KRAS lead to chemoresistance mechanisms [15]. The function of tumor pro-
tein p53 (p53), a tumor suppressor, is widely understood. p53 gene mutations disrupt the
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normal response to DNA damage, blocking apoptosis and cell cycle arrest, thus causing
abnormal cell division. The development of cancer is linked to the epithelial-mesenchymal
transition (EMT) and a metabolic shift from glycolysis to oxidative phosphorylation [16].
Epithelial cells undergoing EMT lose apical-basal polarity and cell—cell junctions, gaining
mesenchymal characteristics, such as invasion and migration. In addition, cells develop
stem cell characteristics and become resistant to chemotherapy [17]. Signaling pathways to
activate and maintain EMT include notch signaling pathway (NOTCH), wingless-related
integration site (Wnt), glycogen synthase kinase 3 beta (GSK-3§3), and transforming growth
factor beta (TGF-3) [18]. These pathways lead to loss of cell-cell adhesion and increased
migratory cell ability by activating transcription factors including Slug, Twist, Snail, or Zinc
finger E-box binding homeobox 1 and Zinc finger E-box binding homeobox 2 (ZEB1/2) [19],
which in turn repress epithelial markers such as E-cadherin. Cancer cells metabolism
shift from production energy by glycolysis to oxidative phosphorylation, mediated by
pathways such as PI3K/Akt/mTOR and AMP-activated protein kinase (AMPK) [20,21].
This network encompasses cancerous and non-cancerous host cells, alongside the modi-
fied extracellular matrix (ECM) and vascularization. Tumor cell invasion is fueled by the
tumor microenvironment (TME), a key factor in tumor development and resistance to
treatment. Its inflammatory, hypoxic nature drives adaptive pathways, enzyme overex-
pression, high adenosine triphosphate (ATP), and low pH, resulting in acidity [22]. The
TME includes immune cells from both innate and adaptative systems, endothelial cells
(ECs), cancer-associated fibroblasts (CAFs), pericytes, adipocytes, and other cell types
that vary by tissue. In the TME, there are also myeloid-derived suppressor cells (MD-
SCs), tumor-associated macrophages (TAMs), and regulatory T-cells (Tregs), which secrete
immunosuppressive molecules such as transforming growth factor beta (TGF-f3) or modu-
lating immune checkpoint [23]. Furthermore, the tumor tissue’s commensal microbiome is
a key TME component, affecting tumor development and growth. The distinct intratumoral
and intracellular microbial composition of different tumor types allows for the correlation
of microbial metabolic pathways and drug treatment characteristics. Moreover, dysbiosis
can trigger a persistent inflammatory immune response, via the microbial activation of
nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kf3), a cancer-linked
inflammation regulator, thus promoting tumor growth [24].

1.2. Nutrition and Nutraceutical Compounds in Cancer Risk Modulation

Diet, nutrition, and lifestyle are correlated with cancer incidence, progression, and
treatment response in some epidemiological studies. Age-related cardiovascular and
metabolic diseases are also linked, according to scientific evidence. Human and animal
studies demonstrate a link between diet, epigenetic changes, and cancer risk. It is possible
to assert that lifestyle and diet, and particularly the MedDiet model, play a key role as
a modulator of cancer risk. It represents not only a diet but also a lifestyle model in the
Mediterranean area, where the incidence of several types of cancer is lower than in other
areas [25]. Such incidence is associated with a potential protective role of the MedDiet
on human health [26]. The plan emphasizes plenty of vegetables, fruits, legumes, whole
grains, and nuts. The diet features extra virgin olive oil (EVOO) as its main fat, plus regular
fish, moderate animal protein, and red wine.

The MedDiet has a high intake of B vitamins (vitamins B1, B2, niacin, B6, folate or
B12), antioxidant vitamins (vitamins E and C), minerals (iron, selenium, phosphorus, and
potassium), and fiber. A variety of nutraceuticals included in the MedDiet have shown an
inverse association with CVD, metabolic disease, neurodegenerative disease, and various
types of cancer, both directly and through epigenetic mechanisms [27]. Strict adherence to
the MedDiet is associated with a lower risk of multiple diseases thanks to phytochemicals
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“non-nutrient” components) present in its constituent foods, such as polyphenols, phy-
tosterols, carotenoids, monounsaturated fatty acids (MUFAs) and polyunsaturated fatty
acids (PUFAs) [28]. Specifically, polyphenols, water-soluble phenylpropanoids, contain at
least one aromatic ring and a benzene ring with hydroxyl substituents. Plants synthesize
these secondary metabolites to cope with stress like pathogen attacks, ultraviolet radiation
(UV) radiation, or harsh weather. They are classified as: (i) flavonoids, characterized by
the formula C6-C3-C6, among which there are flavonols, flavanols, flavones, flavanones,
isoflavones, and anthocyanins; (ii) non-flavonoids, characterized by only one phenolic ring,
including phenolic acids (hydroxybenzoic acids such as vanillic acid and gallic acid) and
cinnamic acids (ferulic and caffeic acids), lignans, tannins, and stilbenes, including RV [29].
Foods contain various polyphenols such as flavan-3-ols, isoflavones, flavonols, flavanones,
flavones, anthocyanins, and stilbenes, impacting color, taste, smell, bitterness, astringency,
and resistance to oxidation. The range of polyphenol levels is widely conditioned by
environmental conditions and soil type [30]. Studies demonstrate the relationship between
the structural chemical conformation of polyphenols and their biological actions, affecting
bioavailability and absorption [31]. In fact, the complex nature of polyphenols results in
poor small intestinal absorption. Following absorption, liver enzymes (glucuronidation,
sulfonation, methylation) modify phenolic substances before systemic circulation and tissue
distribution. The inability of complex phenols to be absorbed leads to their biotransfor-
mation by the gut microbiota into smaller, bioavailable derivatives [32]. Epidemiological
studies suggest that sufficient polyphenol intake, from food or supplements, may reduce ox-
idative stress, chronic inflammation, and cancer risk [33]. Moreover, increased polyphenol
intake enhances cardiometabolic health via anti-inflammatory, antioxidant, vasodilatory,
high-density lipoprotein (HDL)-raising actions, and by inhibiting low density lipoprotein
(LDL) oxidation [34]. Polyphenols have been shown to reduce blood glucose levels by
mechanisms including the inhibition of glucose uptake in the gut and other tissues [35]. In-
deed, epidemiological studies also demonstrate that polyphenols protect against Metabolic
Syndrome, a combination of hypertension, dyslipidemia, insulin resistance, and central
obesity that contributes to cardiovascular and metabolic diseases [36]. Polyphenols can
restore redox balance [37], impacting arachidonic acid metabolism through the inhibi-
tion of various enzymes, such as phospholipase A2 (PLA2), lipoxygenase (LOX), and
cyclooxygenases (COX-1 and COX-2); consequently, there is a reduction in the release of
prostaglandins, thromboxanes, leukotrienes, and other mediators of inflammation [38].
Metal ion chelation mechanisms enable these molecules to exert their chemoprotective
effects, including cell cycle arrest induction, pro-apoptotic process induction, and immune
system regulation [39]. Polyphenols have both estrogenic and antiestrogenic effects, im-
pacting how anticancer drugs are processed in the body, thus reducing their toxicity [40].
In addition, some polyphenols have been shown to be able to disrupt the elongation of
telomeric ends, which could have an important impact on cancer cell replication, and they
are effective as anti-aging compounds [41]. In fact, the level of antioxidants in plasma
depends on the consumption of antioxidant-rich foods and supplements, such as those
containing polyphenols. Natural compounds, by modulating specific proteins, can regulate
drug resistance, which occurs through several mechanisms, including enhanced DNA dam-
age repair, invasiveness, altered drug efflux and metabolism, modification of drug targets
and TME [42]. The important role of nutraceuticals in oncology has led to them being
called onconutraceuticals [43]. In cancer treatment, their application focuses on discovering
synergistic effects with anticancer drugs to improve treatment success, decrease side effects
(e.g., cardiotoxicity, hepatotoxicity), and overcome drug resistance. Table 1 generated from
the literature data, presents the principal biological properties of the key nutraceuticals of
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the MedDiet and Figure 1 shows the molecular diagrams of the main natural compounds
discussed in this review.

Table 1. The Mediterranean Diet, nutraceuticals, and their biological properties.

Nutraceuticals Bioactive Compounds Main Sources Biological Effects References
Naringin,
neohesperidin,
neoeriocitrin,
Citrus bergamia C-glucoside, flavanone  Bergamot juice (B]), Hypolipemic, hypoglycaemic
Risso & Poiteau  O-glycosides, rhoifolin,  bergamot essential anti-inflammatory, [44-47]
extract 40-O-glucoside, oil (BEO) antioxidant, anticancer
neodiosmin, rhoifolin,
poncirin limonene,
linalool, linalyl acetate
Cynara Cynaroplcr%n (cyn), Hepatoprotective,
chlorogenic acid, Leaves, flowers, .. .. .
cardunculus L. . L. ! antioxidant, antimicrobial, [48,49]
dicaffeoylquinic acids, roots, by-products . . .
extract luteolin. inulin antiobesity, chemopreventive
Antioxidant, cardioprotective,
Olive oil (O0), olive antitumoral,
Hydroxytyrosol, . . L L
Olea Europaea L. . . leaves, Olive mill anti-inflammatory, anti-aging,
oleuropein, tyrosol, oleic . . ) [50-53]
extract acid. omeea-3. omeea wastewater antibacterial, prevention of
! §a~o & (OMWW) metabolic disorders and
chronic diseases
Antioxidant,
anti-inflammatory,
Onions. apples antiproliferative, antiviral,
berries brloclz E li tlea cardioprotective, antiaging,
. Flavonol (free and cherries, tomatoes, Preventlon of n.netgbohc
Quercetin disorders, chronic diseases, [54,55]
glycosylated forms) asparagus, peas, . L
. latelet aggregation, lipid
grapes, coriander prate’et a; .
sle ods peroxidation, and capillary
permeability, modulating the
composition of the gut
microbiota
Grapes skin, red -A-nt;10x1dant,
wines, blueberry, anti-inflammatory,
Resveratrol Trans-RV ’ ’ ro-apoptotic, antitumor, [30,56-58]
cranberry, peanuts pro-apop
bilgég ! telomerase inhibition,
y improves gut barrier
Selective estrogen receptor
Ferutinin modulator (SERM-like),
Ferula Communis sesquiterpenes, Roots, rhizomes, antiproliferative, .
L extract latex dose-dependent estrogenic [59,60]

ferulenol, ferulone A
and B, flavonoids

effect; antioxidant effects,
antidiabetic, antimicrobial,
cytotoxic actions

BJ: bergamot juice; BEO: bergamot essential oil; Cyn: cynaropicrin; OO: olive oil; OMWW: olive mill wastewater;
RV: resveratrol; SERM-like: selective estrogen receptor modulator.

1.2.1. Bioactive Compounds from Citrus bergamia Risso & Poiteau and Cynara cardunculus L.

Citrus bergamia Risso & Poiteau, commonly referred to as “Bergamot”, is a Mediter-

ranean citrus fruit, and is considered an endemic plant of the Calabria region. In fact, while
its precise botanical and geographical origins are unknown, bergamot is cultivated along the
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Calabrian Ionian coast, between Bianco and Reggio Calabria [44]. This plant belongs to the
Rutaceae family, Esperidea subfamily. Three varieties of bergamot are known—"Fantastico”,
“Femminello”, and “Castagnaro”. The relevance of this plant stems from the biological role of
herbal preparations, particularly BEO and BJ. BEO is a volatile oil obtained by scraping
and cold pressing the fruit peel; it contains up to 93-96% volatile compounds (limonene,
linalool, and linalyl acetate), while the remaining percentage is a variable fraction of non-
volatile substances (pigments, waxes, coumarins, and psoralens) [45]. B] is derived from the
endocarp and pulp of bergamot fruits, featuring a distinctive composition of compounds
also present in albedo, including flavonoids like naringin, neohesperidin, and neoerioc-
itrin, as well as C-glucoside, flavanone O-glycosides, and flavone O-glycosides such as
rhoifolin 40-O-glucoside, neodiosmin, rhoifolin, and poncirin, along with furanocoumarins
like bergapten and bergamottin. The major biologically active polyphenols from B] were
found in the bergamot polyphenolic fraction (BPF). High-dose toxic furanocoumarins are
removed from the BJ through an alkalinization step in production [61]. The key attraction
of bergamot is the diverse health benefits stemming from the pharmacological activity
of its components. Furthermore, the recent circular economy approach has highlighted
the value of bergamot waste, supporting its use in therapies and advancing scientific
understanding [46,47].
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Figure 1. Diagrams of molecular structures.

Cynara cardunculus L., commonly referred to as “cardoon,” represents a perennial
Mediterranean plant belonging to the Cardueae tribe Cass. (Cynarae Less.), Asteraceae fam-
ily, which includes three botanical taxa, the artichoke (C. cardunculus L. var. scolymus L.
Flowers), the perennial wild thistle (C. cardunculus L. var. sylvestris (Lamk) Flowers), and
the domestic thistle (C. cardunculus L. var. altilis DC.). This Mediterranean plant thrives
despite harsh conditions, including extreme temperature swings and poor soil [62]. The
immature flower structure of the artichoke, encompassing the leaves (bracts) and upper
receptacle, is what is edible. Due to its nutritional profile—high in minerals, vitamins,
amino acids, proteins, and low in lipids—cardoon qualifies as a functional food. The roots
and rhizomes are rich in inulin, a crucial carbohydrate contributing to its high nutritional
value and supporting gut microbiota [49], while cardoon leaves are a source of antioxidants
such as dicaffeoylquinic acids and luteolin. Inedible plant matter accounts for 80-85%
of plant biomass, resulting in wasted bioactive substances. Thus, the byproduct use of
non-food parts yields useful pharmacologically active molecules such as polyphenols and
flavonoids. Chlorogenic acid (5-O-caffeoylquinic acid) and cynaropicrin, a sesquiterpene



Nutrients 2025, 17, 2354

7 of 41

lactone, are responsible for cardoon’s bioactivity, including hepatoprotective, antioxidant,
chemopreventive, antiobesity, and antimicrobial properties [48].

1.2.2. Bioactive Polyphenolic Compounds in Olive Oil

Olive Oil (OO) represents the most important product obtained from the evergreen
tree in the Mediterranean basin Olea Europaea L., a key component of the MedDiet. The
process uses only water and room temperature to crush the olives during malaxation,
creating the product without chemical solvents. The biological activity of Olive Oil is
largely due to its rich phytochemical composition, most notably the lipophilic fraction (95—
97%) of MUFAs (e.g., oleic acid) and PUFAs (e.g., omega-3 and omega-6). The other fraction
consists of tocopherols, phytosterols, squalene, and phenols including oleuropein, tyrosol,
and hydroxytyrosol [63,64]. The European Food Safety Authority (EFSA) has determined
that “phenols in Extra Virgin Olive Oil (EVOO) contribute to the protection of blood lipids
from oxidative stress,” and this claim can be added to a product label when it contains
at least 5 mg of hydroxytyrosol and its derivatives (e.g., oleuropein) per 20 g. Preclinical
data indicates that oleuropein and hydroxytyrosol offer cardioprotection via mechanisms,
including oxidative stress reduction, anti-inflammation, and homocysteine/cholesterol
level modulation [50]. EVOO’s unique phenolic profile, shaped by factors like cultivar and
processing, is vital to its role in preventing a range of diseases, from Metabolic Syndrome to
cancer [51,52]. Furthermore, Olive Mill Wastewater (OMWW) a byproduct from industrial
EVOO processing, contains a high concentration of bioactive polyphenolic compounds
(e.g., oleuropein) [53].

1.2.3. The Key Bioactive Role of Quercetin and Resveratrol

Quercetin and resveratrol, bioavailable polyphenols with antioxidant, anti-inflammatory,
antiviral, and antiproliferative properties, are commonly found in foods characteris-
tic of the MedDiet. Specifically, the flavonol quercetin (2-(3,4-dihydroxyphenyl)-3,5,7-
trihydroxychromen-4-one) is prevalent in nature; key dietary sources include fruits and
vegetables such as apples, berries, and onions [65]. Plants contain quercetin as glycosides
(with attached sugars) or aglycones (without attached sugars), but the most common
type, quercetin-3-O-glucoside, is hydrophilic and thus poorly absorbed. Consequently,
quercetin demonstrates very low oral bioavailability. Extensive research focuses on this
plant compound due to its effects on metabolic disorders, eye diseases, arthritis, and
CVD [54,55].

Resveratrol is a stilbene and is produced by UV irradiation or fungal infection. How-
ever, antitumor, antioxidant, and anti-inflammatory activities are due to the trans-form of
this bioactive compound [56], whereas there is currently only limited evidence for the cis-
isomer [66]. RV is found in various nutritious foods, including grape skins and seeds, and
is frequently detected in red wine, blueberries, cranberries, peanuts, and bilberries. The gly-
cosylation of RV in food enhances its stability and bioavailability by preventing enzymatic
oxidation [67]. The nutraceutical potential of quercetin and RV is being actively researched
due to their effects on inflammation, gut microbiota, oxidative stress, and cancer [57,58].

1.2.4. Bioactive Compounds from Ferula communis L.

The genus Ferula communis L. subsp. communis (Giant fennel) belongs to the Apiaceae
family and is an herbaceous perennial plant containing latex. Central and South-West Asia,
North Africa, and the Mediterranean region are home to approximately 180 species. Two
distinct chemotypes have been identified, exhibiting different biological effects: a poisonous
type with prenylated coumarins, and a non-poisonous type with sesquiterpene daucane
esters. In addition, in plants of the genus Ferula, oleo-gum-resins are also found [68].
They are defined by many natural bioactive compounds, primarily from roots, leaves, and
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rhizomes, including sesquiterpenes, sesquiterpene lactones, flavonoids, coumarins (like
ferulenol), coumarin esters (like ferulone A, B), and phytoestrogens (like ferutinin) [69]. The
non-toxic chemotype’s phytoestrogens make it estrogenic—high extract concentrations can
thus create a doubled ferutinin dose-response; unlike the other chemotype, which is toxic
and causes severe hemorrhagic intoxication from the ingestion of its aerial parts leading to
potentially lethal “ferulosis” [70]. The toxicity is due to the prenylated coumarin ferulenol;
removing it makes the extracts non-toxic since the remaining prenylated coumarins are not
toxic at their concentrations. Several in vivo and in vitro studies reported its pharmacological
properties, including antidiabetic, antimicrobial, antiproliferative, and cytotoxic actions [59,
60]. In vitro studies and preclinical models have shown that ferutinin can be considered a
selective estrogen receptor modulator (SERM), but its mechanism of action is not totally
clear compared with classical SERMs. Its action on estrogen receptors depends on cell
type and concentration; it is an estrogen receptor alpha (ER«) agonist and may act as an
estrogen receptor beta (ERf3) agonist or antagonist. Therefore, the effects of ferutinin on
gene expression and cell signaling pathways within estrogen-sensitive cancers (e.g., ER-
positive breast cancer (BC) and endometrial cancer (EC)) are dose-dependent [71]. Further
studies of this typical Mediterranean plant need to explore the underlying mechanisms
and potential pharmaceutical applications.

2. Biological Functions and Pathological Implications of Reactive Oxygen
and Nitrogen Species

Reactive oxygen/nitrogen species (ROS and RNS) are unstable, thus highly reactive
and partially reduced, oxygen- and nitrogen-derived molecules that include superoxide
anion (O, ™), hypochlorous acid (HOCI), hydroxyl radical, peroxyl radicals, nitric oxide, and
peroxynitrite. The presence of a free electron on the oxygen atom allows oxygenated free
radicals to react with sugars, proteins, and lipids; among free radicals, the superoxide anion
is the most prevalent: oxidative phosphorylation in mitochondria, along with activated
phagocytes, produces it via electron leakage from the electron transport chain to molecular
oxygen [72].

Primarily, superoxide (O, ™) will dismutate into oxygen and hydrogen peroxide (H,O5).
Although superoxide is unreactive with DNA, H,O,, in the presence of iron or copper, can
become highly reactive hydroxyl radicals (¢OH) through the Fenton reaction. The genera-
tion of ROS, including this process and superoxide-derived ROS, is linked to various dis-
eases, including cancer, cardiovascular diseases, and neurodegenerative disorders [73,74].
In hepatocytes and macrophages, ROS are produced during processes like aerobic respi-
ration and inflammation. ROS signaling, regulated by molecules and post-translational
modifications (PTMs), triggers specific cellular responses based on ROS generation’s na-
ture and duration [75]. Cell differentiation and apoptosis, induced by ROS, contribute to
physiological aging. RNS include nitric oxide and peroxynitrite: these molecules readily
oxidize, thus damaging DNA and other biomolecules. Oxidative stress biomarkers are
ROS-production enzymes such as nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase, myeloperoxidase, xanthine oxidase (XO), and endothelial nitric oxide synthase
(eNOS). Well known biomarkers of ROS-induced chemical modifications are the advanced
glycation end products (AGEs), the oxidized low-density lipoprotein (OxLDL), and malon-
dialdehyde (MDA) [76]. Therefore, a crucial factor is keeping the body’s oxidative state
balanced by generating and eliminating free radicals properly [77].

Indeed, high cellular ROS levels damage intracellular components like DNA, causing
mutations and cell transformation [78]. Current findings suggest a link between ROS
production and both internal and external influences. The electron transport chain within
mitochondria is the primary endogenous source of ROS. High ROS levels cause DNA
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damage, oncogene activation, and tumor growth, whereas moderate levels induce cell
death or senescence, thus suppressing tumor development [79].

Exogenous sources of ROS involve an unbalanced diet, anticancer therapy, radiation,
smoking, drugs, and alcohol [80]. Chemotherapy drugs, including anthracyclines (doxoru-
bicin (Dox), daunorubicin (Daun)), and camptothecins can cause various complications
in the CV system due to ROS [81]. This is related to an increased lipid peroxidation and
reduced levels of antioxidant molecules such as glutathione (GSH) [82]. It represents a
non-enzymatic antioxidant, along with vitamins A, C, and E, and flavonoids. Enzymatic
antioxidants include glutathione peroxidase (GPX), glutathione reductase (GRX), catalase
(CAT), superoxide dismutase (SOD), superoxide reductase, thyroxine (TRX), and perox-
iredoxin (PRX). The GSH system involves GSH, GR, glutathione transferase (GST), and
GPX. Its deficiency or an altered GSH/GSSH ratio can lead to inflammation and tumor
progression due to the occurrence of oxidative stress [83]. Dietary antioxidants are crucial,
as evidenced by research on the diverse array of antioxidant systems [84,85]. By modu-
lating oxidative stress, natural compounds can boost the effectiveness of therapies: the
Mediterranean region, in this context, boasts an abundance of antioxidant-rich natural
compounds [48,86].

2.1. Oxidative Stress in Cancer Development: The Role of Scavenger Enzymes

Increasing ROS release is observed during tumor development, activating mechanisms
that drive tumor progression. This causes DNA damage and genetic instability, thus
increasing cancer cell survival and resistance to cell death; consequently, cancer cells
develop a more aggressive nature and capacity for metastasis. Additionally, high ROS
levels trigger resistance mechanisms in tumor cells, which concurrently maintain pro-
tumorigenic signaling. Furthermore, oxidative stress contributes to resistance against
chemotherapy [87]. Therefore, altering the oxidized/reduced state ratio may offer an
oncological treatment, linked to the antioxidant effects of various natural compounds [88].
Unbalanced oxidative stress levels lead to the activation of oncogenes and reduction in the
activity of tumor suppressors. High ROS production in cancer can result in the inactivation
of HyO, scavenger enzymes like glutathione peroxidase (GPX), glutathione reductase
(GRX), catalase (CAT), superoxide dismutase (SOD), superoxide reductase, thyroxine
(TRX), and peroxiredoxin (PRX) and the tumor suppressor gene phosphatase and tensin
homolog (PTEN), a negative regulator of the PI3K/AKT signaling pathway, as well as
the oxidation and inactivation of many other protein tyrosine phosphatases (PTPs) such
as tyrosine-protein phosphatase non-receptor type 1 (PTP1B) [89]. PTEN oxidation and
inactivation results in cell survival through the activation of PI3K and protein kinase
B (Akt) pathways [90]. Akt is involved in cell survival through phosphorylation and
the inactivation of its target proteins, including the pro-apoptotic transcription factors:
forkhead box transcription factors (FOXO), BCL2 associated agonist of cell death (BAD),
BCL2 associated X apoptosis regulator (BAX), and B-cell lymphoma 2 (Bcl-2)-like protein
11 (BCL2L11) [91]. Additionally, several cancers, including esophageal squamous cell
carcinomas, stomach adenocarcinomas, and colorectal carcinomas (CRCs), show increased
expression of genes that code for SOD proteins [92]. Tumor pathogenesis is associated
with mutations in transcription factors, such as nuclear erythroid 2-related factor (Nrf2),
and tumor suppressor genes, such as p53 [93]. In fact, under physiological conditions, the
expression and activity of the transcription factor Nrf2 are strictly degraded by Kelch-like
ECH-associated protein 1 (KEAP1), an adaptor of Cullin 3-based E3 ubiquitin ligase [94].
Cytosolic KEAP1 binding to Nrf2 triggers Nrf2 ubiquitination and proteasomal degradation;
consequently, Nrf2 levels remain low under normal conditions. Oxidative stress causes
the oxidation of thiol groups within KEAP1 (e.g., S-S cross-links) and this conformational
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change causes the release of Nrf2 in the cytosol, with its subsequent translocation to
the nucleus, where Nrf2 activates antioxidant response element (ARE), which regulates
antioxidant enzymes such as NAD(P)H quinone oxidoreductase (NQO1), glutathione
S-transferases (GSTs), thioredoxin reductase-1 (TXNRD1), thioredoxin, ferritin, glutamate-
cysteine ligase, and heme oxygenase-1 (HO-1), depending upon the binding site present
in the promoter region. Nrf2 has been reported to be active and overexpressed in cancer,
promoting tumor progression and cancer cell survival [95]. Its activation can also be
mediated by other signal transduction pathways such as AMPK, extracellular signal-
regulated kinase (ERK), c-Jun amino-terminal kinase (JNK), and PI3K/AKT [96].

2.2. Pathways Involved in Oxidative Stress-Induced Tumorigenesis

Tumorigenesis frequently involves the constitutive activation of the Nrf2 pathway,
as shown in various studies. This activation arises from mechanisms including oncogene
(KRAS, B-Raf proto-oncogene serine/threonine kinase (BRAF), cellular myelocytomatosis
oncogene (c-myc) driven transcription, KEAP1 epigenetic suppression, or KEAP1 somatic
mutations disrupting Nrf2 binding [97]. In addition, growth factors and KRAS-stimulated
pathways have been shown to activate MAPK/ERK 1/2 in cancer, a protein kinase that is a
member of the mitogen-activated protein kinase (MAPK) family resulting in increased cell
proliferation [98]. Estrogen metabolism generates HyO,, which triggers the ERK1/2 signal-
ing pathway in various cancers, such as BC; cancer cell motility and anchorage-independent
growth are also impacted by the latter. Mitochondrial dysfunction-induced ROS production
increase promotes NF-«B upregulation [99] which induces the up-regulation of epidermal
growth factor receptor (EGFR) and its ligands through polycystin 1, transient receptor
potential channel interacting (PKD1)-mediated signaling. PKD-family serine/threonine
kinases act downstream of protein kinase C (PKC) and other signaling pathways, including
those of Src and Abl, play a key role in detoxification from ROS and the transcription
of anti-apoptotic genes [100]. The promotion of tumor progression by PKD1 involves
supporting mechanisms for cancer cell survival. This includes activating ERK1/2 and
regulating the JNK pathway, with effects varying based on the cellular environment [101].
Low HO; levels can trigger NF-«kB, an oxidative stress detector; this can trigger the produc-
tion of anti-apoptotic genes and pro-cancer cytokines like interleukin-6 (IL-6) and tumor
necrosis factor alpha (TNF-«) and may activate or suppress MAPK phosphorylation. More-
over, blocking NF-«B may overcome drug resistance, a key factor in the development of
chemo-resistance [102]. Reduced ROS activates hypoxia-inducible factor 1-alpha (HIF1-
«), leading to the expression of genes essential for cancer growth, such as the vascular
endothelial growth factor (VEGF) and its receptors; high ROS levels can directly cause
oxidative DNA damage [103] and interfere with the function of epigenetic modifiers, such
as DNA methyltransferases (DNMTs) and histone deacetylases (HDACs), resulting in
both the hypomethylation and hypermethylation of DNA. Oxidative DNA damage causes
alterations such as base pair deletions, insertions, mutations, and double-strand breaks
(DSBs), forming mutagenic 8-oxo-2'-deoxyguanosine (8-oxodG), which can accumulate
and cause cancer. Furthermore, telomere 8-oxo-G accumulation affects length and impairs
end-capping maintenance [104]. ROS have a direct impact on the ability of transcription
factors (TFs) to bind DNA: increased localization of Fos/Jun DNA-binding redox factor-1
(Ref-1) protein and ataxia-telangiectasia mutated (ATM) serine/threonine kinase—key
to DNA repair—occurs in the nucleus. High ROS levels promote cancer metastasis by
suppressing natural killer (NK) cell activity [105] and can regulate macrophages recruit-
ment and cancer cell invasion. In fact, ROS contribute to the acquisition of metastatic
potential by cancer cells through EMT and the expression of TF Snail, which downregulates
the expression of epithelial cadherin (E-cadherin) and promotes the expression of neural
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cadherin (N-cadherin) and vimentin. Excessive levels of ROS can lead to the activation of
intrinsic and extrinsic apoptosis; in particular, mitochondrial excess ROS levels play a key
role in initiating intrinsic apoptosis. High ROS levels lead to the release of cytochrome C
(cyt C) into the cytosol, where it engages the apoptotic protease-activating factor 1 (APAF1),
followed by the formation of the apoptosome and the activation of caspase-9 [106]. ROS
can activate the extrinsic apoptotic pathway by modulating death receptors at the trans-
membrane level, including Fas (CD95), tumor necrosis factor receptor 1 (TNFR-1/TNF-o
receptor) and tumor necrosis factor-related apoptosis-inducing ligand receptors (TRAIL-
R1/2). Activated receptors, in the cytosol, recruit adaptor proteins (e.g., Fas-Associated
Death Domain Protein (FADD)) and procaspases-8/10, forming death-inducing signaling
complexes (DISCs) that activate caspases-8 and -10. Direct activation of effector caspases -3,
-6, and -7 is possible via the latter; however, in some cases, they cleave Bid into tBid, which
in turn stimulates mitochondrial outer membrane permeabilization (MOMP), blocking
the anti-apoptotic activity of Bcl-2 and Bcl-XL, and leading to the release of cyt C, thereby
activating the intrinsic pathway [107]. Oxidative stress and DNA damage, byproducts of
chemo and radiotherapy, can cause tumor cells to develop drug resistance.

The Dual Action of Nutraceutical Compounds and Their Therapeutic Role

In vitro and in vivo studies support the idea that eating antioxidant-rich foods is a good
way to reduce cancer risk. Some natural compounds have demonstrated dual action: they
act as antioxidants to protect healthy cells from treatment-related oxidative stress, and as
pro-oxidants in cancer cells, activating pro-apoptotic pathways. The antioxidant proper-
ties of bergamot polyphenolic fraction (BPF) are shown by its ability to reduce oxidative
stress biomarkers and intracellular ROS levels [108]. Studies show that BPF can reduce
MDA levels in rats fed a hyperlipidemic diet (HLD) [109] and in rats fed a high-fat diet
(HFD) [110]. Bergamot’s lipid-lowering effects, alongside reductions in MDA, Lectin-like
oxidized low-density lipoprotein receptor-1 (LOX-1), and protein-kinase B (PKB), indicate
improved potential, especially for those on statins [111]. BPF also improves the activity
of endogenous antioxidant enzymes, including GPX and SOD. By reducing peroxynitrite,
it improves antioxidant defense mechanisms, thus preventing oxidative stress-induced
tissue damage. High-fat Western diet-fed (WD SW) mice treated with BPF showed re-
duced 3-nitrotyrosine (3-NT) in their livers compared to controls; 3-NT is a biomarker of
peroxynitrite oxidative damage [112]. The protective effect of BPF on dox-induced ROS
accumulation in cardiomyocytes in vivo, leading to a reduction in Dox-induced cardiomy-
opathy by enhancing the resident c-kit* CD45"¢8 CD31"*8 endogenous cardiac stem cells
(eCSCs) and preventing 8-hydroxy-2'-deoxyguanosine (8-OHdG) nuclear accumulation has
been demonstrated [113]. Phenolic compounds found in Cynara cardunculus extract, includ-
ing caffeic acid and chlorogenic acid are effective antioxidants [114] acting as free radical
scavengers and modulating the expression of genes coding for antioxidant enzymes such
as SOD, GPX, and CAT [115]. Moreover, the sesquiterpene cynaropicrin has antioxidant
properties [116] and pro-oxidant action in cancer cells [117]. In fact, inhibiting thioredoxin
reductase (TxR), a key enzyme in cellular redox homeostasis, causes intracellular ROS
increase and triggers apoptosis in cancer cells [118]. Cynaropicrin treatment increased nu-
clear Nrf2 in A375 human melanoma cells, as demonstrated by in vitro antioxidant assays.
This is linked to a time-dependent rise in the transcription of genes that code for antioxi-
dant enzymes like glutamate-cysteine ligase (GCL) and heme oxygenase (HMOX-1) [119].
In vivo studies reveal the effect of cynaropicrin on the antioxidant enzymes (SOD, CAT,
Glutathione Peroxidase (GSH-PX)), and on 8-OHdg in the control and cerebral ischemia—
reperfusion (I/R) injury in rats, highlighting that it supports the antioxidants defense
system against oxidative-stress [120]. Specifically, bergamot extract formulations with
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Cynara cardunculus show synergistic effects, potentially expanding treatment options for
various diseases, including cancer, thanks to their antioxidant properties [121]. An in vivo
study has shown the increasing level serum of GPX and SOD after 16 weeks of treatment
with BPF and Cynara cardunculus phytocomplex, named Bergacyn®, accompanied by a
reduction in serum MDA levels [122].

It has been shown that oleuropein is able to increase the activity of antioxidant enzymes
(i.e., SOD, GPX, GRX, CAT) and non-enzymatic antioxidant systems such as GSH [123]. It
is established that oleuropein’s antioxidant activity is dependent on factors such as cell
type, concentration, exposure time, and oxidative stress levels [53]. In fact, its pro-oxidant
action has been shown in several in vitro cancer cell lines, for example, MCF-7 BC cells [124],
HepG2 hepatocellular carcinoma (HCC) cells [125], and HEY human epithelial ovarian
cancer cell line [126], thus contributing to cell death by promoting cell damage and leading
to apoptosis. Recent studies also demonstrate that oleuropein, BPF, and Cynara cardunculus
extract lessen Dox’s cardiotoxic effects within an in vitro rat embryonic cardiac myoblast
(H9¢2) model [113,127,128]. Moreover, their contribution to upholding the integrity of cellu-
lar plasma membranes’ phospholipid bilayer could be pivotal via lipid content regulation.
These natural compounds reportedly prevent endoplasmic reticulum (ER) dysfunction and
promote apoptosis by modulating intracellular calcium [129]. Nevertheless, more research
is necessary to verify the effectiveness and safety of these compounds for human use.

The preventative and therapeutic effects of quercetin and RV on various cancers are
well-documented and dose-related [130]. At low doses, these agents exhibit antioxidant
properties (ROS neutralization), but at higher doses, they stimulate ROS production, lead-
ing to apoptosis via the intrinsic pathway (cyt C release, caspase activation) and extrinsic
pathway (death receptor activation) [131]. Low doses of quercetin and RV stimulate GSH
synthesis and modulate antioxidant enzymes (SOD, CAT, GPX), offering protection. KEAP1
residue oxidation and subsequent inhibition leads to Nrf2 accumulation in the cytoplasm,
followed by nuclear translocation and ARE activation [132]. Through AMPK and silent mat-
ing type information regulation 2 homolog 1 (SIRT1) activation, RV inhibits the mammalian
target of rapamycin (mTOR) and deacetylates/activates forehead transcription factor O sub-
family member 3a (FOXO3a), boosting antioxidant enzyme gene expression [133]. While at
high doses, they interfere with mitochondrial function, generating dissipation of membrane
potential, with the release of cyt C [134]. By suppressing intracellular ROS accumulation,
RV protected H9¢2 cardiac cells form Dox-caused toxicity [135]. Because of its strong antiox-
idant properties, quercetin enhances Dox’s antitumor activity by inhibiting topoisomerase
II (Topo II) and intercalating with DNA [136].

Several studies highlighted the biphasic effect of ferutinin [137]: low doses, in fact,
show antioxidant and protective effects on healthy cells, decreasing oxidative damage.
Ferutinin pretreatment at a low dose significantly reduced Dox-induced cardiotoxicity in
H9c2 cells, according to Macri et al. [138]. In addition, ferutinin at low concentrations
demonstrated hyperproliferative effects with phytoestrogenic action in MCF-7 BC cells.
At higher concentrations, ferutinin can increase oxidative stress in cancer cells with an-
tiproliferative effect [139], showing a lower toxicity in healthy cells with respect to cancer
cells. Bax upregulation and cyt C release, hallmarks of mitochondrial apoptosis, are dose-
dependently increased by ferutinin [140]. It shows selective toxicity toward cancer cells
over healthy cells, with effects varying by dose and cell type. Specifically, high ferutinin
levels suppressed the growth of MCF-7 (estrogen-dependent) and MDA-MB-231 (estrogen-
independent) BC cells [141]. Furthermore, ferutinin pretreatment decreased ROS and
MDA buildup in lipopolysaccharide-stimulated (LPS) neurons and shielded human oligo-
dendrocytes (MO3.13) and neurons (SH-SY5Y) from LPS-caused oxidative stress [142].
Therefore, further in vitro and in vivo research is needed to clarify the dose-dependent
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mechanisms of nutraceuticals” dual effects on cancer cells (Table 2) and their potential as
cancer therapy adjuvants.

Table 2. Dose-dependent Action of Nutraceuticals.

Low Dose Effect High Dose Effect
Nutraceutical (Protec- (Pro- Mechanism References
tive/Antioxidant) Oxidant/Anticancer)
Bergamot + MDA/ROS; Synergistic support i_P e1.'oxyn1tr1te; T
. 1 SOD/GPX; . antioxidant enzymes
polyphenolic 1 3-NT/LOX-1; in redox balance, not (cardiomyocytes [108-111,113,128,143]
fraction . ! directly cytotoxic. JTyocytes,
T protective effect. liver).
1 Activates antioxidant
Nirf2/SOD/CAT/GSH-  Inhibits TxR — 1 gﬁlrl‘\‘jlso(f%
Cynaropicrin PX; ROS — apoptosis in 0-aDoD1o tié in [117-119]
antioxidant in A375, cancer cells. pro-apop
. . melanoma, neural,
brain, liver tissues. .
liver cells.
3 . T ROS, .
SOD/GPX/GRX/CAT; d r?flli(;l(:c}tli(z)rrl\d?atl C Dose- and cell-type
Oleuropein J ROS; rel}; ase: apop’toific n specific redox [124,125]
protects membrane o modulation.
and ER integrity. MCEF-7, HepG2, HEY
cancer cells.
Activates Nrf2; 1 ROS; DNA Caspase cascade
1+ GSH/SOD/GPX; damage; cyt C P S
. ey .. KEAP1 oxidation,
Quercetin inhibits Topo II; release; apoptosis via ARE activation. Topo [132]
protection from Dox intrinsic/extrinsic i nhibitio;l p
cardiotoxicity. pathways. '
1 ROS;
T mitochondrial Mitochondrial
SIRT1/AMPK/FOXO3a, permeability depolarization; dual
Resveratrol antioxidant genes; transition pore effect depending on [133-135]
prevents Dox (mPTP) opening; dose and exposure
toxicity. apoptosis through time.
caspase activation.
Antioxidant, 1 ROS, 1 Bax, cyt C; SERM:-like;
phytoestrogenic; apoptosis in MCF-7 mitochondrial
Ferutinin 1 ROS/MDA; MDA-MB-231 BC apoptosis; [138-142]
protects H9¢2 and .
cell-selective effects.

neural cells.

cells.

The arrows indicate decrease () and increase (1), and progression (—), respectively; MDA: malondialdehyde;
ROS: reactive oxygen species; SOD: superoxide dismutase; GPX: glutathione peroxidase; 3-NT: 3-nitrotyrosine;
LOX-1: lectin-like oxidized low-density lipoprotein receptor-1; Nrf2: nuclear erythroid 2-related factor; CAT:
catalase; GSH-PX: glutathione peroxidase; TxR: thioredoxin reductase; GCL: glutamate-cysteine ligase; HMOX-1:
heme oxygenase; GRX: glutathione reductase; Cyt C: cytochrome C; GSH: glutathione; Topo II: topoisomerase II;
Dox: doxorubicin; DNA: deoxyribonucleic acid; KEAP1: kelch-like ECH-associated protein 1; ARE: antioxidant
response element; SIRT1: silent mating type information regulation 2 homolog 1; AMPK: AMP-activated protein
kinase; FOXO3a: forkhead transcription factor O subfamily member 3a; mPTP: mitochondrial permeability
transition pore; BC: breast cancer; SERM-like: selective estrogen receptor modulator-like.

3. Highlights of the Inflammatory Process

Inflammation plays a crucial role in cancer development and metastasis, thus a key
focus for cancer therapies. The growth of blood vessels, stimulated by cytokine production,
aids carcinogenesis, while the resulting ROS leads to DNA damage. Moreover, the promo-
tion of resistance mechanisms in cancer cells by inflammation can lead to chemoresistance.
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This occurs both through increased DNA damage due to inflammation, with activation
of oncogenic bypass signaling pathways (e.g., mesenchymal-epithelial transition factor
(C-MET), PI3K/AKT, MAPK), and through the action of some mediators of inflammation,
including IL-6 and interleukin-1 alpha and interleukin-1 beta (IL-1o/3), which modulate
apoptotic and autophagic processes [144]. Tissue damage triggers inflammation—the
body’s complex response involving a cascade of pro- and anti-inflammatory mediators
(e.g., cytokines, prostaglandins) to various insults (ischemia, trauma, infection, toxins).

The inflammatory process recruits microcirculation ECs and white blood cells, a
process driven by molecular signals and balanced levels of pro- and anti-inflammatory
mediators which are essential to maintain homeostasis [145]. A persistent inflammatory
trigger or a failed initial response can shift an acute inflammatory to a chronic process.
Aggressive cancer phenotypes, marked by increased survival, proliferation, invasion,
angiogenesis, and metastasis, are often facilitated by the pro-cancer microenvironment
generated from chronic inflammation.

The inflammatory response, characterized by toll-like receptor (TLR) activation,
is linked to and modified by dysbiosis [146], NOD-like receptors (NLRs), C-type
lectin receptors (CLRs), and retinoic acid-inducible gene (RIG)-I-like receptors (RLRs)
by neutrophils/macrophages in response to pathogen-associated molecular patterns
(PAMPs) [147].

Leukocyte recruitment and infiltration are mediated by chemokines like interleukin-8
(IL-8) and macrophage-inflammatory protein 2 (MIP-2) alongside inflammatory media-
tors including complement C5a complement fragments, platelet-activating factor (PAF),
and leukotriene B4 (LTB4) [148] from the venous system to sites of tissue damage, and
there is their attachment to the ECM. Activated ECs express adhesion molecules, such
as the intercellular adhesion molecule 1 (ICAM-1) and intercellular adhesion molecule 2
(ICAM-2), facilitating leukocyte adhesion and diapedesis. This process involves adhesion
molecules (i.e., L-P- and E-selectin) and chemokines/cytokines (i.e., TNF-«, TGF-f3, IL-
1B, IL-6) secreted by activated macrophages, which regulate inflammatory cascade. The
pro-inflammatory phenotypes in ECs and fibroblasts are mainly triggered by TNF-«, IL-6,
and IL-1p3, which activate TNFR, interleukin-6 receptor (IL-6R), and interleukin-1 receptor
(IL-1R), resulting in the activation of NF-kB, MAPK, and Janus kinase/signal transducer
and activator of transcription (JAK-STAT) signaling pathways [149].

3.1. Hallmarks of Cancer Inflammation

The research focuses on understanding the mechanisms through which inflamma-
tion impacts cancer, aiming to identify more selective therapeutic targets within specific
pathways [144]. Findings from basic and clinical research demonstrate the importance
of inflammatory molecules in the initiation and advancement of multiple cancer types,
including breast, lung, and liver cancers [150]: these molecules could impact every phase
of tumor growth, from malignant change to metastasis [151]. Conversely, acute inflamma-
tion may inhibit cancer progression: indeed, it can stimulate the immune system to help
remove tumor cells. The onset of chronic inflammation increases the risk of developing
highly invasive cancers. In particular, an inverse correlation between MedDiet and chronic
inflammation, with lower levels of inflammatory biomarkers (i.e., CRP and IL-6) and lower
risk of several cancers, has been reported [152]. Inflammation can promote tumor initia-
tion, due to infections (e.g., Human Papillomavirus (HPV), Helicobacter pylori (H. pylori),
Hepatitis B Virus (HBV), Hepatitis C virus (HCV) or carcinogens (e.g., cigarette smoke,
toxic substances, ionizing radiation) [153]. Conditions such as diabetes, hyperlipidemia,
and CVD are associated with low-grade inflammation that may predispose to the risk of
developing cancer (e.g., BC, HCC, pancreatic cancer (PC)) [154]. The activation of Signal



Nutrients 2025, 17, 2354

15 of 41

Transducer and Activator of Transcription proteins (STAT), especially Signal Transducer
and Activator of Transcription 3 (STAT3), a transcription factor regulating genes related
to cell growth, survival, and immunity, is heavily involved in cancer development across
many tissues and inflammatory responses in cancers of the stomach, liver, lung, colon,
and pancreas. ROS and RNS, substances produced by leukocytes and other phagocytic
cells, can cause irreversible DNA damage (oncogenic mutations like RAS and myc, and
the inactivation of p53 and retinoblastoma protein 1 (RB1)), increasing cancer risk. The
cytokine MIF, released from macrophages, T lymphocytes, and tumor cells, can aggravate
DNA damage and the accumulation of oncogenic mutations [155]. By suppressing p53’s
transcriptional activity, MIF interacts with it and promotes the survival of damaged cells.
By suppressing pro-apoptotic gene activation and stimulating cell proliferation through
PI3K/AKT and NF-kB signaling, this mechanism contributes to tumor development. The
release of pro-inflammatory cytokines (TNF-c, IL-1, IL-6, IL-8, and interleukin-23 (IL-23))
from macrophages and T-lymphocytes indirectly leads to genetic instability via epithelial
cell ROS production [151]. NF-«B signaling is activated via TNFR and IL-1 receptor en-
gagement by TNF-oc and IL-1 cytokines, thereby promoting a pro-inflammatory phenotype
in ECs and fibroblasts. The JAK/STAT3 pathway is mainly activated by IL-6 and IL-23,
contributing to the development of inflammatory tumors. In addition, the binding of
IL-22 to its receptor (Interleukin-22 Receptor Subunit 1(IL-22R1)/Interleukin-10 Recep-
tor Subunit 2 (IL-10R2)) triggers the janus kinase 1 and tyrosine kinase 2 (JAK1/TYK2)
pathway, causing STAT3 phosphorylation and subsequent nuclear translocation to activate
target genes involved in epithelial cell survival and regeneration. The roles of NF-«B
and STAT3 pathways in tumor formation are widespread across many tissue types and
strongly associated with inflammation in cancers of the stomach, colon, liver, lung, and
pancreas, influencing cell proliferation, survival, angiogenesis, and immune evasion [156].
The TME comprises cancer cells, stroma, blood vessels, CAFs, ECs, pericytes, dendritic cells
(DCs), and activated macrophages; these components are crucial for both antigen-specific
immunity and immune tolerance, bridging innate and adaptive immunity. The TME signif-
icantly involves TAMs, which are derived from circulating monocytic precursors and are
directed toward the tumor and are induced by interferon-gamma (IFN-y)-mediated classi-
cal activation or alternatively by the helper T 2 cells (Th2) and cytokines like interleukin-4
(IL-4) and interleukin-13 (IL-13). TAMs can stimulate tumor cell proliferation, promote
angiogenesis, and promote invasion and metastasis. Inflammatory-TME also includes
polymorphonuclear leukocytes, and various inflammatory cells such as T lymphocytes
(sometimes B cells) [157,158]. Consequently, the link between oxidative stress, chronic
inflammation, and cancer development is clear. Recent findings indicate a link between the
aberrant activation of Wnt3 /catenin signaling and the progression of tumors and chronic
inflammatory diseases. Research into Wnt/ 3-catenin signaling reveals opposing roles for
peroxisome proliferator-activated receptor-gamma (PPARy), which is downregulated in
chronic inflammation and cancer [159,160]. PPARYy’s role is context and tissue-specific, with
evidence suggesting it can function as an oncosuppressor in certain situations, causing cell
cycle arrest and apoptosis while lowering cell invasion, migration, and inflammation [161].
Deregulation in pro-inflammatory or hyperlipidic conditions promotes oncogenesis [162].
Conversely, the NF-«B pathway upregulates pro-inflammatory cytokines (interleukin-6
(IL-6), VEGE, (IL-8)), Inducible nitric oxide synthase (iNOs), TGF-f3, indirectly boosts
WNT/ B-catenin, thus fueling inflammation and tumor growth. Survival and prognosis
may be indicated by the grade of tumor infiltration, which varies by tumor type.
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3.2. Modulation of Inflammatory Pathways by Nutraceutical Compounds from the
Mediterranean Diet

The effect of diet on acute and chronic inflammation is associated with the devel-
opment of cancer. [163]. The anti-inflammatory properties of numerous natural com-
pounds suggest their potential use as supplemental components within alternative anti-
inflammatory treatment systems (Figure 2).
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Figure 2. BPF, cyn, oleuropein, RV, quercetin, and ferutinin are able to modulate inflammatory path-
ways including AMPK/SIRT1, JNK/p38MAPK, PARP-1, and PI3K/Akt/NF-«kB; modulate the secre-
tome of tumor cells by reducing the secretion of pro-inflammatory cytokines (IL-12, IL-8, CRP, SFRP4,
IL-6, IL-1B, TNF- ) and increasing the secretion of anti-inflammatory cytokines (IL-10), and modulate
the activation state of macrophages. Bergacyn® restored PPARY levels and prevented NF-«kB overex-
pression in obese WAT, where PPARYy is significantly reduced. Whereas, in BAT, despite the increased
expression of PPARy, during metabolic dysfunction and “whitening,” Bergacyn® reduced PPARY.
Restoration of adipose tissue homeostasis and regulation of PPARy by Bergacyn® could reduce inflam-
mation and metabolic signals involved in some cancers. The arrows indicate decrease (|) and increase
(1), respectively. Bergamot polyphenolic fraction (BPF); cynaropicrin (cyn); resveratrol (RV); AMP-
activated protein kinase/silent mating type information regulation 2 homolog 1 (AMPK/SIRT1); c-Jun
amino-terminal kinase/p38 mitogen-activated protein kinase (JNK/p38MAPK); poly (ADP-ribose)
polymerase-1(PARP-1); phosphatidylinositol 3-kinase/ protein kinase B/Nuclear factor kappa-light-
chain-enhancer of activated B cells (PI3K/Akt/NF-kB); interleukin-12, -8, -6, -1f3, -10 (IL-12, -8, -6,
-1B, -10); C reactive protein (CRP); secreted frizzled-related protein 4 (SFRP4); tumor necrosis factor
alpha (TNF- «); peroxisome proliferator-activated receptor-gamma (PPARy); brown adipose tissue
(BAT); white adipose tissue (WAT).

3.2.1. Anti-Inflammatory Activity of Citrus Bergamia

Citrus bergamia derivatives have demonstrated anti-inflammatory activity, linked to
AMPK/SIRT1 axis activation [164]. The activation of AMPK, a key regulator of energy
and senescence, is linked to changes in inflammatory factors such as IL-6 and TNF-oc [133].
Importantly, BPF might reduce levels of serum glucose, transaminases, gamma-glutamyl
transferase (GGT), and inflammatory biomarkers such as TNF-a and CRP [165]: this pre-
vents worsening liver inflammation and fibrosis [112]. Reduced hepatic inflammation, via
IL-6 reduction and Interleukin-10 (IL-10) mRNA upregulation, has been linked to BPF
supplementation [166]. By lowering phospho-JNK and phospho-p38 MAPK, it can control
the release of pro-inflammatory cytokines such as IL-13. The reduction in inflammation and
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hepatocellular ballooning, key to cancer initiation, also supports this effect [112,150]. This ef-
fect may also be due to BPF’s antioxidant activity, which lowers excessive poly (ADP-ribose)
polymerase-1 (PARP-1) activity. In disease states, the second choice has been observed to
decrease the levels of the MAPK inhibitor mitogen-activated protein kinase phosphatase
1 (MKP-1), leading to elevated inflammation. Consequently, BPF’s anti-inflammatory ef-
fect stems from the decreased PARP-1 repression of MKP-1, leading to JNK/p38 MAPK
inhibition [167]. Findings from a randomized, double-blind, placebo-controlled study in
type 2 diabetes mellitus/non-alcoholic fatty liver disease (T2DM/NAFLD) patients show
that Bergacyn® improves NAFLD and liver fibrosis markers by modulating inflammatory
biomarkers [122].

3.2.2. The Beneficial Effects of Cynaropicrin and Bergacyn® to Counteract Inflammation

Recently, in vivo studies evaluated Bergacyn®’s potential for tissue-specific PPARy
modulation. In obese white adipose tissue (WAT), where PPARY is significantly re-
duced, Bergacyn® restored PPARYy levels and prevented NF-kB overexpression. Despite
increased PPARYy expression in brown adipose tissue (BAT) during metabolic dysfunc-
tion and “whitening,” Bergacyn® downregulates PPARy, thus promoting a thermogenic
and metabolically active state [121]. PPARY’s involvement in colorectal, lung, breast,
prostate, and pancreatic cancer (proliferation, differentiation, and inflammation) makes the
tissue-specific Bergacyn® modulation data highly impactful [168,169]. Moreover, the in-
flammatory microenvironment, a consequence of obesity-linked adipose tissue dysfunction,
can promote tumor progression. Therefore, the restoration of adipose tissue homeostasis
and PPARy regulation by Bergacyn® could lessen inflammation and metabolic signals
involved in certain cancers [121] (Figure 2). Several studies highlight cynaropicrin’s in-
volvement in the inhibition of the NF-«B transcriptional activation pathway [170]. In vitro
studies on the murine macrophage cell line RAW264.7 show its ability to inhibit inflam-
matory cytokine secretion following the induction of inflammation with LPS [171]. In the
A375 cell line treated with cynaropicrin, the p65/RelA protein, a member of the NF-«B
family, was reduced [119]. In vivo studies report that dosage-based cynaropicrin treatment
on rats with cerebral I/R injury-induced significantly reversed the increased level of the
pro-inflammatory cytokines (TNF-«, IL-6, and IL-13), and appreciably reduced the mRNA
level of NF-kB [120].

3.2.3. Anti-Inflammatory Activity of Oleuropein

In vitro oleuropein has been shown to reduce the secretion of pro-inflammatory cy-
tokines and inflammatory mediators [172,173]. In a RAW264.7 macrophage line acti-
vated with LPS (M1 phenotype), oleuropein treatment reduced Interleukin-12 (IL-12) and
TNEF-« levels in the cell culture supernatant and the oleuropein action on readjusting the
M1/M2 macrophage polarization towards the anti-inflammatory M2 phenotype has been
reported [174]. RAW264.7 cells were used to assess oleuropein’s ability to reduce LPS-
induced inflammation by reducing levels of IL-1§3, IL-6, and TNF-« [175,176]. Oleuropein
pretreatment in LPS-activated Human Umbilical Vein Endothelial Cells (HUVECs) has been
shown to potentially lower mRNA levels of pro-inflammatory cytokines like IL-1f3, IL-6,
TNF-«, and IL-8 [172]. Several in vivo studies demonstrated oleuropein’s anti-inflammatory
action via reduced pro-inflammatory cytokine levels [177,178]. In addition, oleuropein
treatment effectively mitigated the adverse effects of inflammation in obese mice. Specifi-
cally, the treatment led to higher PPARY levels in fat and the liver, and lower JNK-1 levels
in the liver [179].
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3.2.4. The Beneficial Role of Resveratrol and Quercetin to Counteract Inflammation

Recent research indicates RV and quercetin, at varying doses, decrease inflammation
by impacting SFRP4, a protein involved in obesity, diabetes, and pancreatic inflammation,
thus highlighting a connection between obesity-driven inflammation and dysfunctional
insulin response. Resveratrol and quercetin’s potent antioxidant and anti-inflammatory
effects suggest their potential as pancreatic oxidative stress drug candidates [180].

Extensive research supports the growing potential of natural compounds like resvera-
trol and quercetin to treat inflammation; these compounds reduced weight gain, dyslipi-
demia, and inflammation in a study of obese rats. Reduced body weight gain, adipocyte
size, and adipose tissue mass, as well as improved serum dyslipidemia, are linked to the
anti-obesity effects of quercetin and resveratrol. A quercetin and resveratrol blend’s obesity-
reducing effects are linked to its anti-inflammatory properties; it decreases adipokine
secretion, activates AMPK«1/SIRT1 signaling, and thus may reduce HFD-induced obesity
and inflammation [181].

Further evidence supports quercetin’s neuroprotective effects, potentially by promot-
ing microglia/macrophage M2 polarization via the PI3K/Akt/NF-«kB pathway. These
results suggest quercetin may be a useful treatment for ischemic stroke [182].

Cardiac hypertrophy in mice was induced by implanting Ang II osmotic pumps. Re-
searchers investigated primary neonatal rat cardiomyocytes and heart tissues to understand
resveratrol’s mechanism in preventing Ang Il-induced cardiac hypertrophy. This research
reveals important new mechanisms by which resveratrol protects against Ang Il-induced
cardiac hypertrophy, specifically by blocking NF-«B signaling and pro-inflammatory cy-
tokines. The findings add to the evidence that REV may be a promising drug for treating
cardiac hypertrophy and heart failure [183].

3.2.5. Preliminary Evidence of Anti-Inflammatory Activity of Ferutinin

Antioxidant, anti-inflammatory, and anticancer effects of bioactive compounds from
plants and herbs were demonstrated in vitro and in vivo.

Reducing oxidative stress lowers the risk of developing various diseases, including
cancer and chronic inflammatory diseases. The antioxidant activity of flavonoids, phe-
nolic acids, stilbenes, tannins, and lignans (phenolic plants) is demonstrated in vivo and
in vitro: the presence of hydroxyl groups on their aromatic rings is responsible for reducing
oxidative stress, with antioxidant capacity increasing with the number of these groups.
Specifically, bergamot flavonoids have demonstrated pleiotropic effects, reducing oxidative
stress and inflammation at the cellular and tissue levels. Moreover, in vitro data suggests
antioxidant activity in monoterpenes, sesquiterpenes, and diterpenes, bioactive compounds
extracted from various plants and fruits. In fact, sesquiterpenes show significant anticancer,
anti-inflammatory, and bactericidal effects, suggesting an important role in human diseases.
Different experiments suggest that sesquiterpenes offer protection in low doses, while high
doses cause severe toxicity; the bipolar effect is a dose-dependent increase in the perme-
ability of lipid bilayers and mitochondrial membranes to cations—particularly divalent
cations like calcium—caused by sesquiterpenes, which are important in various pathophys-
iological processes [137]. Furthermore, ferutinin demonstrates anti-inflammatory effects
by reducing oxidative stress. The anti-inflammatory effects of ferutinin were evaluated
using an edema model. Specifically, the reduction in inflammation during the early stages
was significant, likely due to histamine and serotonin. Notably, at this stage, ferutinin
demonstrated a significantly more potent anti-inflammatory effect compared to the aspirin
control dose. This study implies ferutinin’s anti-inflammatory action likely results from
blocking histamine and/or serotonin activity [184]; however, further studies are needed to
better explain the pathway under these mechanisms.
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4. Cell Cycle Regulation: Key Mechanisms and Links to Tumorigenesis

A misregulation in cell cycle regulation can promote the development of diseases,
including cancer. The cell cycle is controlled by molecular mechanisms involving dis-
tinct CDK-cyclin complexes, arising from the interplay between cyclin-dependent kinases
(CDKs) and cyclins [185], and through three checkpoints: (i) G1 checkpoint, (ii) G2 check-
point, and (iii) M checkpoint, also known as spindle assembly checkpoint (SAC). The G1
checkpoint’s activity is determined by growth factors, capable of both promoting and
suppressing cell growth, thus monitoring the transition between the G1 phase and the S
phase. The regulation of the G1 checkpoint hinges on the crucial roles played by CDKs and
tumor suppressor proteins, notably p53 and pRb. If a cell identifies damage or irregularities,
it activates DNA repair; if this fails, apoptosis is triggered.

The tumor suppressor p53 controls cell metabolism, redox balance, and DNA repair,
inducing cell cycle arrest and cell death. Cell cycle arrest results from p53 binding to
upstream promoter regions of the p21 gene, leading to its transcriptional activation; in
particular, p21 protein inhibits cyclin E/Cdk2 and cyclin D/Cdk4/6 complexes, resulting in
cell cycle arrest in the G1 phase [186]. Findings suggest that zinc finger protein 57 (ZFP57),
a key regulator of BRCA1 expression in ovarian cancer, might impact the G1 cell cycle
checkpoint [187]. The silencing of CEP192, a novel gene involved in the development
of NAFLD and HCC, has been recently shown to cause cell cycle arrest in the G0/G1
phase of cancer cells, thereby decreasing their proliferation and self-renewal. These results
reveal the onco-immunological involvement of CEP192 in the establishment of a TME [188].
The cell uses the G2 checkpoint to confirm successful DNA replication before beginning
mitosis. Its regulation involves a complex network including CDKSs and checkpoint kinases
(Chk1 and Chk?2), along with other proteins and signaling pathways. Overexpression of
polo-like kinase 1 (PLK1), a crucial mitotic checkpoint protein for cell cycle progression,
is associated with unfavorable prognoses in some cancers (e.g., pancreatic adenocarci-
noma) [189]. The M checkpoint monitors kinetochore-microtubule binding during mitosis;
its regulation involves Mad, Bub proteins, CDKs, and other signaling pathways [190]. The
regulation of all cell cycle phases, including G1/S and G2/M transitions, by the PTEN
oncosuppressor gene is crucial for cell proliferation and survival. Furthermore, it plays
a role in preserving chromosome structure, safeguarding the genome against structural
and numerical chromosomal instability (CIN). CDKs, specifically A, B, D, and E, are key
to the molecular mechanisms governing cell cycle control. Cyclins, each produced and
degraded at specific cell cycle stages, bind to particular CDKs, forming active complexes
essential for each phase and their activity is positively modulated by cyclins and inhibited
by CDK inhibitors (CKIs). Transcriptional and post-translational modifications, along
with the ubiquitin-proteasome system'’s rapid degradation of cyclins and CKIs, control the
activation state. Dysregulation of cyclin expression and activity, and mutations or changes
in the genes that regulate checkpoints, can lead to uncontrolled cell division and contribute
to cancer development [191].

4.1. Mechanistic Insights into Cell Cycle Alterations in Cancer Development

Cell cycle dysregulation arises from multiple pathways: checkpoint failures, spindle
checkpoint defects, CDK/cyclin mutations, abnormal cyclin D and E levels, and telomerase-
driven immortality. The initial step in tumor formation is cell immortalization, or the
evasion of senescence; the immortalization is related to the activity of enzyme telomerase,
which increases telomere length at the ends of chromosomes [192]. Common alterations in
the cell cycle include elevated levels of CDK4/6 and CDK2, both vital kinases in the G1 to
S phase progression. Phosphorylated Rb underlies these alterations, leading to E2F release
and activation of genes essential for cell cycle’s S phase initiation. Overactive complexes
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correlate with boosted cancer cell growth, aging, migration, and blood vessel formation,
alongside apoptosis resistance and therapy resistance (like against CDK inhibitors) in
cancers such as breast and ovarian cancers [193]. Genes regulating cell cycle checkpoints,
including p53 and FRP1, also show mutations or deletions in cancer cells. The lack of p53
crucially affects cell cycle checkpoint regulators, leading to the increased expression of
genes such as p21 (a growth inhibitor) and pro-apoptotic genes, mainly after DNA damage
halts the cell cycle at G1 [186]. Uncontrolled cell cycle progression may result from the loss
of oncosuppressor genes, including Rb1, p16INK4A, p15INK4B, and p14ARF. Furthermore,
mutations in p16, Rb loss, or increased CDK2 activity can lessen the effectiveness of CDK4/6
inhibitors (e.g., palbociclib, ribociclib, abemaciclib). This has prompted the development of
combination, or second-generation, strategies to overcome therapeutic resistance [193]. The
link between checkpoint failure and cancerous phenotypes in normal cells is established;
however, the specific genetic alterations responsible are still unknown. Furthermore, the
direct causal link between checkpoint malfunction and cell transformation, versus the
involvement of other regulatory genes after immortalization, requires further investigation.
In cancer treatment, genes involved in checkpoints may be useful as diagnostic tools and
as targets for new drugs [194].

4.2. Nutraceutical-Induced Cell Cycle Modulation in Cancer and
Chemotherapy—Induced Cytotoxicity

The effects of natural compounds on inhibiting tumor cell proliferation by modulating
specific cell cycle checkpoints and interfering with mitotic progression have been shown;
their effects on cell cycle regulation are reported in Table 3. This suggests both their
potential use as coadjuvants in the treatment of some types of cancer, and as a treatment to
reduce the toxic effects induced by chemotherapeutic drugs in non-cancerous cells [195]
(Figure 3).

Table 3. Effects of Natural Compounds on Cell Cycle Regulation.

Natural Compound/Plant

Cell Cycle Phase Molecular Mechanism Cell Type References

Citrus bergamia

Silent mating type information
G1/S regulation 2 homolog 2 (SIRT2)/Akt/p53 THP-1, SH-SY5Y [196-198]
T apoptosis

CAL-62, 8505C,

Cynaropicrin G2/M | Pyruvate kinase M2 (PKM2) /PARP SW1736, A549 [199,200]
. MCEF-7, MDA-MB-231,
Oleuropein G1/S 1 p21, p53, CKIs MDA-MB-468 [201-203]
T p53/p21/p27/Bax/p53 upregulated
modulator of apoptosis (PUMA) |
Resveratrol S cyclins D/E C3, Llr\rlf;g’ Ad3l, [204-208]
1} cyclin-dependent kinase 2, 4, 6
(CDK2/4/6)
1 p21/p27 HOS, OSCC, T47D,
Quercetin G1/G2/M 1 CDK2/6, cyclins A/E/D A375, p39, YD10B, [209-212]
1 Rb phosphorylation YD38, OSCC, KON
. 1 G1 and restoring cell T apoptosis
Ferutinin cycle 1 protective effect H9c2 [138,140,213]

The arrows indicate decrease (|) and increase (), respectively. SIRT2: silent mating type information regulation 2
homolog 2; PKM2: pyruvate kinase M2; PARP: poly-ADP-ribose-polymerase; p53: tumor protein p53; CKls: CDK
inhibitors; Bax: BCL2 associated X, apoptosis regulator; PUMA: p53 upregulated modulator of apoptosis; CDK:
cyclin-dependent kinase; Rb: retinoblastoma protein.

The anti-proliferative effects of Citrus bergamia natural derivatives on different cancer
cell types were evaluated through cell cycle arrest in multiple in vitro studies [143]. Human
leukemia THP-1 cells treated with Flavonoid-Rich Extract (FRE) of B] showed cell cycle
arrest in the S phase, leading to apoptosis through the SIRT2/AKT/p53 pathway [196];
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in addition, Citrus bergamia juice decreased human neuroblastoma SH-SY5Y cell growth
in vitro via G1 cell cycle arrest and reduced cell adhesion [197]. Animal studies showed
that FRE of B] decreased levels of baculoviral inhibitor of apoptosis repeat-containing 5
(Birc5) and the cell cycle regulator p21, potentially increasing tumor cell death [198].

Mitochondrial-
dependent
and independent
Apoptosis

N
”~
Citrus bergamia — Phase G1/S — > 1 SIRT2/Akt/p53
| |
Cynaropicrin —_— Phase G2/M _— |PKM2/PARP
| |
Oleuropein —_— Phase G1/S —_— Tp21, p53, CDKi
| |
Resveratrol e Phase S —_— Tﬁi;gi/%%{sg&:
| |
Quercetin — Phase G1/G2/M —_— 1CDK2/6, ggﬁ,’z‘:m’ PRb
| |
Ferutinin — Phase G1 e 1Ca%, cyt Cand

caspase activation

Figure 3. The anti-proliferative effects of natural extract derivatives on different cancer cell types
were evaluated through cell cycle arrest in multiple in vitro studies. Citrus bergamia has been shown
to possess an antiproliferative effect by arresting the cell cycle in the G1/S phase through the
modulation of the SIRT2/Akt/p53 pathway. Cynaropicrin arrested the cell cycle in the G2/M
phase by modulating the PKM2/PARP pathway. Oleuropein exerts an antiproliferative effect by
arresting the cell cycle in the G1/S phase by increasing p21/p53/CDKi. RV treatment arrested the
cell cycle in the S phase by modulating p53/p21/p27/Bax/PUMA and the reduction in cyclins
D/E and CDK 2/4/6. Treatment with quercetin causes cell cycle arrest in G1/G2/M phases with
the modulation of p21/p27 and reduction in CDK 2/6 and cyclins A/E/D and phosphorylation
of Rb. Ferutinin treatment has been shown to exsert an antiproliferative effect leading to cell cycle
arrest in the G1 phase by increasing intracytoplasmic Ca 2+ concentration, inducing cyt C release
and caspases activation. The arrows indicate decrease (]) and increase (7), respectively. Silent
mating type information regulation 2 homolog 2 (SIRT2); protein kinase B (Akt); tumor protein
P53 (p53); Cynaropicrin (Cyn); Pyruvate kinase M2 (PKM2); poly-ADP-ribose-polymerase (PARP);
tumor protein p21/p53; Cyclin-dependent kinase inhibitor (CDKi); Resveratrol (RV); p53/p21/p27;
BCL2 associated X, apoptosis regulator (Bax); p53 upregulated modulator of apoptosis (PUMA);
Cyclin-dependent kinases (CDK 2/4/6); Cytochrome C (Cyt C).

Other evidence highlighted that cynaropicrin could inhibit cellular growth by cell
cycle arrest, mainly in the G2/M phase, in thyroid cancer cell lines CAL-62, 8505C, and
SW1736 cells, by a dose- and time-dependent way [199]. This also demonstrates PKM2
inhibition in A549 cells, causing increased p53, decreased DNA repair enzyme PARP, with
a subsequent cell cycle arrest [200].

Oleuropein significantly modulates the cell cycle, notably by upregulating CDK in-
hibitor levels, thus causing cell cycle arrest, and by increasing p53 and p21 levels, which
then affects gene expression to activate both intrinsic and extrinsic apoptosis pathways [201].
In vitro investigations using MCF-7 and MDA-MB-231 BC cells revealed that oleuropein
treatment induced cell cycle arrest at the G1 and S phases [202]; its effects on MDA-MB-231
and MDA-MB-468 BC cell lines include cell proliferation inhibition, apoptosis induction
through S-phase arrest, and caspase-1, -4, and -14 expression [203].
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Several in vitro studies [209] indicate quercetin’s role in modulating the cell cycle.
Myeloid cell line p39 and osteosarcoma cells HOS showed increased G1 cell cycle arrest
after treatment, accompanied by decreased CDK-2, -6, cyclins A, D, E, Rb phosphorylation,
and increased p21 and p27 expression [210]. Furthermore, quercetin triggered G1 cell cycle
arrest in oral squamous cell carcinoma cell lines YD10B and YD38 OSCC [211].

It has been suggested that quercetin treatment leads to G2/M cell cycle arrest in T47D
and KON BC cells and A375 melanoma cells [212].

Moreover, RV’s in vitro effects included enhanced G1 to S phase transition, S phase
cell cycle arrest, and reduced cancer cell proliferation and viability. Prostate cancer cells
(LNCaP and PC-3) treated with RV showed reduced expression of cyclins D1 and E, CDK4,
and cyclin D1/CDK4 kinase activity [204]. RV’s ability to decrease A431 and colon cancer
cell proliferation has been linked to lower levels of cyclins D1/D2/E2, CDK2/4/6, and
higher levels of p21 and p27 [205]. RV was found to activate p53 along with its target genes
p21, p27, Bax, PUMA, MDM2, and cyclin G [206]. Therefore, RV may stimulate the G1-to-S
phase transition in BC cells, subsequently halting their progression through the S phase,
thus diminishing their proliferation and viability [207]. In addition, it has been reported
that RV reduces Versican (VCAN) secretion by CAFs, presumably by modulating the cell
cycle [208].

Exposure to ferutinin leads to a decreased G1 phase and increased cell death, modify-
ing the cell cycle profile [140]. In addition, it was shown that ferutinin, thanks to its cell-type
dependent activity, restores the cell cycle in H9¢2 myoblasts incubated with Dox [138],
suggesting its protective role in cell cycle progression, highlighting its potential as a thera-
peutic agent in cancer treatment and in mitigating chemotherapy-induced cardiac damage
(CIC) (Figure 4) [213].
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Figure 4. The tissue-dependent and dose-dependent effect of ferutinin. At low doses, ferutinin ca
counteract the cardiotoxic effect of Dox. At high doses, ferutinin can enhance Dox chemosensitization
in tumor tissues. Doxorubicin (Dox).

5. The Human Microbial Landscape in Cancer Development

The human microbiota comprises approximately 300 bacterial, fungal, and viral
species, totaling almost 40 trillion microorganisms [214,215]. Over 97% of the human
microbiota is located in the gastrointestinal tract, mainly the colon, and is known as the gut
microbiota. In addition, current findings demonstrate a diverse microbiome within previ-
ously considered sterile tumor tissues (lung, breast, liver), which is closely associated with
oncogenesis [216,217]. Consequently, the intratumoral microbiota (ITM) concept emerged
and ITM’s anti- and pro-tumorigenic effects have been demonstrated through mechanistic
studies [218]. Tumor-inhibiting metabolites are produced by T and NK cells activated
by the ITM. These may raise oxidative stress, causing genomic instability and mutations,
affecting epigenetics, weakening immunity, and stimulating inflammation, thus, leading to
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tumor initiation and progression [219], representing an integral part of TME [218]. Tumors
in mucosal organs, including the colon, cervix, esophagus, and lung, are colonized by the
ITM [220].

Non-mucosal organs such as the pancreas, liver, breast, and prostate also contained
ITM, which suggests the existence of both adjacent tissue invasion and hematogenous
spread during colonization [218]. This supports the hypothesis that TME colonization
by the ITM may result from malformed blood vessels [217]. Tumor subtype differences
in intratumoral microbial composition have been demonstrated [221]. Tumors can arise
from viral infections and persistent bacterial inflammation, such as that caused by H. pylori
and gastritis.

Evidence on the colon cancer microbiota has shown the presence of bacteria Bacteroides
fragilis, Escherichia coli (E. coli), and Fusobacterium nucleatum—frequently detected in ma-
lignant pancreatic and BC—and fungal species such as Candida albicans [219]. The species
of Blastomyces are prevalent in lung cancers, while the species of Malassezia are abundant
within BC [216]. TME regulation originates from both the tumor and gut microbiota,
impacting immune responses and cancer cell metabolism; consequently, this crosstalk
between intratumoral and gut microbiota might elicit specific immune reactions [222].
Metagenomics, using next-generation sequencing (NGS) and computational analysis of
16S rRNA amplicons, has enabled the characterization of gut microbiota diversity and
abundance [223,224]. Firmicutes and Bacteroidetes are the most prevalent phyla among the
roughly 1000 bacterial species in the gut microbiota. The gut’s microbiome plays a critical
role in numerous physiological processes, including vitamin production, the metabolism
of food components, protection from pathogens, and the shaping of the host’s immune
system [225]. The pharmacomicrobiomic concept has established the gut microbiota’s role
in influencing drug effects, such as chemotherapy. In fact, the gut’s microbes can alter
drug metabolism, impacting their absorption, effectiveness, or safety [226]. Dysbiosis, an
imbalance of gut microbiota, is linked to cardiovascular, metabolic, and neurodegenerative
diseases, as well as cancer [227]. Studies of the gut microbiome via metabolomics and
metagenomics show its dual impact on cancer prevention, onset, and therapy, having both
suppressing and oncogenic activity [228]. Several studies indicate that communication
between colorectal cells and gut bacteria is vital for the body’s overall health and immune
response, especially in metabolism. The influence of gut microbiota on cancer initiation,
progression, and metastasis, as well as its potential in cancer treatment, is a promising area
in precision medicine [229].

Emerging Connections and Therapeutic Perspectives of Gut Microbiota and Nutraceuticals
in Cancer

An interplay between the gut microbiota, diet-induced inflammation, and cancer
pathogenesis has been found. In fact, an altered microbiota associated with chronic inflam-
mation in colon, pancreatic, breast, gastric, liver, and prostate cancer, has been identified.
Consequently, investigations on nutraceutical compounds potentially able to modulate the
microbiota, with implications on cancer pathogenesis, are crucial. A correlation between
diet and healthy gut microbiota has been demonstrated, highlighting the implication of
dietary natural compounds in affecting cancer through the gut microbiota [230]; thus, this
relationship between diet and cancer through the gut microbiota may provide new insights
for cancer treatment [231] (Figure 5). Specifically, metabolic changes like obesity are linked
to persistent low-level inflammation, a connection between obesity and cancer supported
by many studies. The increasing prevalence of excessive fat dietary intake is linked to the
adoption of HFD in many countries, with a lack of fiber intake [232]. In comparison to
traditional rural populations, HFD populations showed reduced bacterial diversity [233].
HFDs impact gut microbiota to produce more leucine, subsequently activating the mam-
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malian target of rapamycin complex 1 (mTORC1) in bone marrow, leading to increased
polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) differentiation and
faster BC growth through the gut-bone marrow—tumor axis.
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Figure 5. Mediterranean-style dietary model and/or nutraceutical supplementation are directly
related to health gut microbiota. The MedDiet, rich in fiber and natural compounds such as polyphe-
nols, supports a balanced microbiota, reduces inflammation, LPS and MDA levels, promotes lipopro-
tein rearrangement, and contributes to reduction in cancer risk and cancer outcome improvement.
Controversially an HFD alters the composition of the microbiota, promoting AGEs production,
with increased chronic inflammatory state—associated with obesity, and activating the gut-bone
marrow-tumor axis, resulting in increased onset and progression of cancer. The arrows indicate
decrease (]) and increase (1), respectively. Mediterranean Diet (MedDiet); lipopolysaccharide (LPS);
malondialdehyde (MDA); high fat diet (HFD); advanced glycation end product (AGE).

Evidence indicates a positive correlation between good adherence to the MedDiet and
the health of the gut microbiota and could potentially represent an important pattern in
reducing the incidence of a range of diseases, including cancer [234]. Several natural com-
pounds hold promise as gut microbiota modifiers and cancer prevention/treatment aids.
Notably, many dietary polyphenols can beneficially alter the gut microbiota and directly
act as antioxidants, synergistically enhancing probiotic effects [235]. Polyphenols such as
RV and quercetin boost intestinal health by modulating Nrf2 and NF-«B, thus improving
barrier function, repairing the gut lining, reducing inflammation, and regulating immunity.
RV and quercetin modulate intestinal tight junction protein expression and distribution,
thus raising trans-epithelial electrical resistance (TEER), according to reports. Therefore,
they beneficially impact the gut barrier, helping to manage numerous diseases stemming
from gut barrier dysfunction [236]. In diet-induced obese mice, oleuropein’s protection
of metabolism and vasculature is linked to its immunomodulatory effects and improved
gut barrier function by reducing dysbiosis [179]. A recent in vivo study highlighted that a
bergamot polyphenol extract (BPE) with micronized albedo and pulp fibers (BMF) helps
maintain gut microbiota health in animals fed an HFD. A four-week trial using a 50/50%
BPE/BMF mixture in rats fed a HFD resulted in significantly better metabolic profiles
and lower gut LPS levels, which are vital in cancer development [237,238], reducing MDA
levels and leading lipoprotein size re-arrangement. This effect is related to improvements
in gut microbiota composition, particularly through the modulation of the Gram-negative
bacteria Proteobacteria and the dominant phyla Firmicutes and Bacteroidetes [110]. The find-
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ings suggest that the interaction between nutraceuticals, microbiota, and cancer is a highly
promising field of research, and could offer new strategies for prevention and therapeu-
tic support in oncology. Indeed, a complex interplay of various cell types with diverse
metabolic states and shared metabolites creates the TME. The complex cellular structure
produces a profile of available nutrients and reactive metabolites, including advanced
glycation end-products. The literature analysis reveals that the receptor for advanced
glycation end products (RAGE) and its ligands link energy metabolism (often disrupted by
mitochondrial dysfunction) to immune responses (shaped by local microbiota), impacting
tumor development. Investigating metabolic processes in cancer and immune cells reveals
novel therapeutic strategies, potentially broadening immunotherapy’s reach and effective-
ness. Targeting the RAGE and its ligands in immunotherapy shows promise for treating
CRC, according to the literature review [239].

6. Limitations of Nutraceutical Supplementation: Current Challenges
and Emerging Evidence-Based Strategies

Although nutraceuticals offer proven benefits, their widespread use in clinical prac-
tice is hindered by considerable limitations. Factors such as the poor bioavailability of
active compounds, inconsistent dose-response, and insufficient clinical trial data hinder
progress [240]. In addition, responses vary considerably between individuals due to genetic,
gut microbiome, dietary, age-related, and health factors, complicating the determination of
ideal dosages [241-243]. While exhibiting significant in vitro potential, the bioavailability
of polyphenols (frequently researched for nutraceutical purposes) is low due to digestive
breakdown and limited absorption in the upper gut. Primarily, only a small percentage of
low molecular weight polyphenols (like glycosylated flavonoids) are absorbed in the upper
small intestine, mainly the duodenum and jejunum. Most complex polyphenols bypass ab-
sorption until reaching the colon, undergoing microbial biotransformation into absorbable
simpler metabolites (e.g., phenolic acids) [244]. In addition, a recent study demonstrated
that innovative natural formulations significantly increased plasma metabolite levels in
treated animals, overcoming the poor bioavailability of polyphenols and maximizing their
beneficial effects [46]. Nutraceutical safety and efficacy, and their contribution to health,
will improve if “bed-to-bench” issues are addressed.

7. Conclusions

This review summarizes results and evidence showing that Mediterranean nutraceuti-
cals hold promise in cancer prevention and treatment. The antioxidant, anti-inflammatory,
and pro-apoptotic properties of Mediterranean nutraceuticals, such as polyphenols and
phytochemicals from Citrus bergamia Risso & Poiteau, Cynara cardunculus, Olea europea L.,
quercetin, resveratrol, and Ferula communis L., are promising as complementary treatments
against cancer, providing a solid basis for considering them as effective adjuvants in conven-
tional cancer therapies. Crucially, many nutraceuticals demonstrate dual dose-dependent
effects; low concentrations act as antioxidants, and high concentrations induce selective
cancer cell death via oxidative stress. This two-stage process holds significant promise
for preventing and enhancing the effectiveness of cancer treatment: better outcomes and
reduced side effects, particularly cardiotoxicity, may result from using them with standard
cancer treatments. Furthermore, the interaction of natural compounds with the main
molecular pathways involved in chronic inflammation (e.g., NF-«B, STAT3, PI3K/Akt) and
oxidative stress (e.g., Nrf2/KEAP1, AMPK/SIRT1) highlights their potential in remodeling
the TME. The active control of metastasis and chronic inflammation is suggested by the
ability to adjust macrophage polarization, cytokine production, and the innate immune
response. Developing validated anticancer therapies critically depends on integrating
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nutraceuticals, oncology, and pharmacology to optimize drug mechanisms, combinations,
nutraceutical dosages (BPF, cynaropicrin, quercetin, RV, and ferutinin), and therapeutic
translation. Despite this, natural compounds are not intended to replace conventional can-
cer treatments like chemotherapy, but rather to enhance them in a personalized approach
for each patient. Low bioavailability, lack of extensive clinical trials, and inconsistent
patient responses are delaying the clinical translation of these results. The efficacy of
nutraceuticals in oncology requires confirmation through rigorous randomized controlled
trials to implement positive preclinical results into proven therapeutic applications. Further
in vitro and in vivo studies are needed to optimize bioavailability (e.g., formulation with
nanocarriers), characterize pharmacokinetics, determine optimal dosages, and evaluate
long-term safety. In closing, the emerging concept of onconutraceuticals represents an
integrated paradigm that combines prevention, therapeutic support, and personalized
medicine. In this context, the “Mediterranean” approach could offer a sustainable and
evidence-based dietary-pharmacological model, useful not only for the management of
neoplastic disease but also for the promotion of global health.

Author Contributions: Conceptualization, V.M., RM. and C.A.; writing—original draft, C.A., RM.
and M.S,; writing—review and editing, G.R., S.U., C.A. and ].M.; Tables and graphs, G.R., S.U. and
C.A; supervision, V.M., CM. and E.P; funding acquisition, V.M. and C.M. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by PON-MIUR 03PE000_78_1, PON-MIUR 03PE000_78_2, and
PRIR Calabria Asse 1/Azione 1.5.1/FESR (Progetto AgrInfra Calabria), SAP01-2023-000077—Bando
A Cascata Rome Technopole Spoke 1 e Spoke 6-PRODIGI (CUP B83C22002820006).

Conflicts of Interest: The authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be construed as potential conflicts of interest.

Abbreviations

8-0x0dG 8-0x0-2'-deoxyguanosine

8-OHdG 8-hydroxy-2’-deoxyguanosine

3-NT 3-nitrotyrosine

AGEs advanced glycation end products

Akt protein kinase B
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Birch Baculoviral Inhibitor of Apoptosis Repeat-containing 5
BMF albedo and pulp-derived micronized fibers
BJ bergamot juice

BPE bergamot polyphenol extract

BPF bergamot polyphenolic fraction

BRAF B-Raf proto-oncogene serine/threonine kinase
c-Met mesenchymal-epithelial transition factor

c-myc cellular myelocytomatosis oncogene



Nutrients 2025, 17, 2354 27 of 41

CAFs cancer-associated fibroblasts
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Rat sarcoma virus
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SFRP4 secreted frizzled-related protein 4

SOD superoxide dismutase

STAT Signal Transducer and Activator of Transcription
STAT3 Signal Transducer and Activator of Transcription 3
T2DM type 2 diabetes mellitus

TAMs tumor-associated macrophages

TEER trans-epithelial electrical resistance

TFs transcription factors

TGF-p Transforming growth factor beta

Th2 helper T 2 cells

TLR Toll-like receptor

TME tumor microenvironment

TNF-a Tumor Necrosis Factor Alpha

TNFR-1 tumor necrosis factor receptor 1

Topo I topoisomerase I1

TRAIL-R1/2  tumor necrosis factor-related apoptosis-inducing ligand receptors
Tregs regulatory T-cells

TRX thyroxine

TXNRD1 thioredoxin reductase-1

TxR thioredoxin reductase

uv Ultraviolet radiation

VEGF Vascular Endothelial Growth Factor

VOO virgin olive oil

WAT white adipose tissue

WD SW High-fat Western diet-fed

Wnt Wingless-related integration site

XO xanthine oxidase

ZEB1/2 Zinc finger E-box binding homeobox 1 and Zinc finger E-box binding homeobox 2
ZFP57 zinc finger protein 57
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